Meta-heuristics for Improved RF Emitter Localization

نویسندگان

  • Sondre A. Engebråten
  • Jonas Moen
  • Kyrre Glette
چکیده

Locating Radio Frequency (RF) emitters can be done with a number of methods, but cheap and widely available sensors make the Power Difference of Arrival (PDOA) technique a prominent choice. Predicting the location of an unknown RF emitter can be seen as a continuous optimization problem, minimizing the error w.r.t. the sensor measurements gathered. Most instances of this problem feature multimodality, making these challenging to solve. This paper presents an analysis of the performance of evolutionary computation and other metaheuristic methods on this real-world problem. We applied the NelderMead method, Genetic Algorithm, Covariance Matrix Adaptation Evolutionary Strategies, Particle Swarm Optimization and Differential Evolution. The use of meta-heuristics solved the minimization problem more efficiently and precisely, compared to brute force search, potentially allowing for a more widespread use of the PDOA method. To compare algorithms two different metrics were proposed: average distance miss and median distance miss, giving insight into the algorithms’ performance. Finally, the use of an adaptive mutation step proved important.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...

متن کامل

Effective heuristics and meta-heuristics for the quadratic assignment problem with tuned parameters and analytical comparisons

Quadratic assignment problem (QAP) is a well-known problem in the facility location and layout. It belongs to the NP-complete class. There are many heuristic and meta-heuristic methods, which are presented for QAP in the literature. In this paper, we applied 2-opt, greedy 2-opt, 3-opt, greedy 3-opt, and VNZ as heuristic methods and tabu search (TS), simulated annealing, and pa...

متن کامل

A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots

Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and pr...

متن کامل

A Comparison of Four Multi-Objective Meta-Heuristics for a Capacitated Location-Routing Problem

In this paper, we study an integrated logistic system where the optimal location of depots and vehicles routing are considered simultaneously. This paper presents a new mathematical model for a multi-objective capacitated location-routing problem with a new set of objectives consisting of the summation of economic costs, summation of social risks and demand satisfaction score. A new multi-objec...

متن کامل

A bi-objective model for a scheduling problem of unrelated parallel batch processing machines with fuzzy parameters by two fuzzy multi-objective meta-heuristics

This paper considers a bi-objective model for a scheduling problem of unrelated parallel batch processing machines to minimize the makespan and maximum tardiness, simultaneously. Each job has a specific size and the data corresponding to its ready time, due date and processing time-dependent machine are uncertain and determined by trapezoidal fuzzy numbers. Each machine has a specific capacity,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017